首页  ⁄  解决方案  ⁄  使用液相色谱柱的十个误区

使用液相色谱柱的十个误区


误区一:HPLC色谱柱不能反转使用


错误!实际上HPLC色谱柱的填装压力比最大使用压力高很多(通常会高2倍)。如果装柱时使用了恰当的匀浆剂,并且分配一定的时间使柱床稳定,一支填装良好的色谱柱是完全可以双向使用的。需要反向使用色谱柱的情况包括:柱转换时的反冲、柱头被强保留物质吸附污染的色谱柱(反冲的冲洗路径更短更合理)、冲洗残留在筛板上的颗粒物以降低柱压或防止柱压升高。


反向使用色谱柱有一个例外,就是生产商在色谱柱的进样端使用了孔径更大筛板的情况,反向使用可能会将填料从柱床冲出。色谱柱在工厂填装时,出口端的筛板孔径必须比色谱柱中最小颗粒的粒径还要小。譬如,色谱填料平均粒径是5μm,粒径分布范围是3–7μm,出口端筛板孔径必须小于3μm,使填料没有可能从柱床跑到色谱柱筛板外面。大多数生产厂家选择的筛板孔径是2μm。


Q:为什么有些色谱柱生产厂家会选择入口端和出口端采用不同孔径的筛板呢?


A:很简单,孔径大的筛板相对孔径小的筛板不容易堵,一个0.5μm的筛板会比一个2μm的筛板被堵得快。所以为了避免柱压上升过快和客户的抱怨,生产商会折中地选择在入口端用一个孔径稍大的筛板,通常色谱柱上就会标一个箭头表示只能在一个方向使用。在反向使用HPLC色谱柱时,最好仔细看一下说明书或者咨询一下色谱柱生产厂家是否能反向使用。


备注:色谱柱反方向冲洗之前,一定要将色谱柱返接,不连接检测器冲洗一段时间。以防有杂质将流通池堵住。一般情况下,正常色谱柱反方向冲洗后应保持反方向使用。


误区二:所有的C18(L1)柱是一样的


错误!在HPLC发展初期,十八烷基硅烷(常被称为ODS或C18)是最早的键合固定相之一,也导致了“反相色谱”这个新技术的诞生。C18成为了反相色谱的标准固定相并被大部分色谱工作者所采用。


制药工业是HPLC技术的最早使用者,监管部门不想偏袒任何一家色谱柱生产厂商的品牌名字,FDA和USP编写了一套分类体系,给每一种药物应用方面的新方法一个通用名称。对HPLC色谱柱,命名为“L1”C18,因为出现在大部分送审材料中,理所当然就成为了“L1。随着别的种类固定相的增加,分别都有了自己的“L序列号(如:”L7是C8,L10是CN基,L11是苯基等等)。很不幸,这个命名体系被证明是不可靠的。因为每种商品化的C18色谱柱,虽然同样是选用硅胶作为基体,但各自都有自己特定的填料键合合成工艺,因此色谱性能也不相同。譬如,有的生产厂商采用十八烷基一氯硅烷键合试剂和低表面积的硅胶,而其它一些厂家采用同一硅烷试剂但选用了表面积更高的硅胶基体。这两种C18柱表现的色谱性能不同,后者C18固定相的键合比例大于前者。


误区三:保护柱不影响分离效果


错误!首先,配一个保护柱是个好主意。如果保护柱的式样或固定相选择错误,保护柱也能够对分离效果有很大影响。要明确的是:保护柱是保护分析柱避免强保留的组分、颗粒物和其它一些不需要的东西污染用的。保护柱比起分析柱便宜许多,所以污染的保护柱替换更勤。理想的情况是,保护柱的固定相和分析柱恰好相同。如果固定相保留强(如高载碳量和混合相),甚至导致不同的选择性。如果保留弱,问题就不那么明显,除非固定相影响整个体系选择性。为了使保护柱最小化的影响分离,保护柱需要合适的装配。显然,保护柱安插在进样口和分析柱之间,但是如果管路太长(太长或者内径太大),就会造成额外的峰展宽,从而影响分离。


系统引入整合保护柱(保护柱直接接在色谱柱上),从以往的报道看,基本上会达到分析柱的最佳水平。但是,整合保护柱通常和卡式色谱柱一起使用,目前已不是那么流行。不管采用什么形式的保护柱,都应当在不影响操作的前提下容易从HPLC系统中卸下和更换。理论上,接上保护柱延长了分析柱的柱长,会增加柱效和色谱分离效果。但由于上面讨论中的一些因素的影响,增加保护柱只能维持原来的色谱分离性能在最佳水平,有时候甚至会变差。使用保护柱的好处是延长柱寿命,而非提高整体色谱分离效果。


误区四:提高温度往往有利于分离效果


错误! 随着温度升高,流动相粘度下降,因此分析物传质速率提高,所以就能够提供更好的色谱分离效果。除了柱效,温度同样影响保留因子(k)和选择性(α),温度的变化因素能够提高或降低分辨率(其实这也是色谱分析最关心的问题)。保留时间往往随着温度升高而降低,因为温度作为一个热力学参数,使得高温度下分析物倾向于留在流动相中,会更快的从柱子上洗脱下来。然后,不同的化合物可能对温度变化有不同响应程度的保留时间改变。更加确切的说,它们的范德霍夫线的斜率不同(lnk与1/T,T以绝对温度计量);换句话说,α值会变化。另外温度增加会使低k值的色谱峰出峰更快,甚至接近在无保留物质t0附近出来,导致很难进行定量分析。


以analgesics(一种镇痛药,译者注)为例,图二显示的一系列的色谱图列出了七种镇痛药在柱温20-90°C的分离情况。我们从中可以发现许多特点。首先,所有分析物随着温度升高,保留时间变短且峰变窄,意味温度升高利于分离效果。其次,镇痛药之一的水杨酸(即阿司匹林)在峰5,6之间,随着温度变化位置改变较大。事实是在20-40°C时,该物质随温度变化,洗脱顺序也发生了变化。在中间的30℃时,水杨酸和第6号峰的非那西丁一起出峰。


所以,温度大于40°C会引起分离时间变短和洗脱顺序发生变化。当然,一个提高温度的好处在于降低了操作时的柱压,以便于使用更大的流速和粒径更小的填料。另一个在高温下能够导致色谱柱性能问题的因素是流动相的温差。如果柱子在60°C下操作,但是流动相在室温流入,那么进入的较冷的流动相就能够引起峰变形,原因是不同温度下分析物会趋向在高温的流动相中。所以建议大家在较高温度下使用色谱柱的时一定记得预热流动相。


误区五:碳载量越高,反相色谱柱就越好


错误!谈到普通的烷基键合相时,这样的结论看来是对链长、载碳量和表面键合度等概念有误解。通常,对一个真正的反相保留机制来说,保留能力取决于被分析分子的相对疏水性,所以保留一般取决于载碳量。载碳量越高,保留能力越强。载碳量一般与链长成正比,但并不是必然如此。


典型的色谱硅胶表面,可用于和有机硅烷试剂键合反应的硅醇含量在8.0μmol/m2左右。假设在所有的硅醇基上都能实现单层键合,则链长越长,载碳量就越大,结果是保留能力与链长成正比。短链键合相(比如C8),如果表面键合度相对更高,那么键合的碳就会更多,就会导致可能比C18有更加强的保留能力。


此外,一些厂家使用二氯硅烷和三氯硅烷做键合试剂,由于聚合反应的发生通常能增加固定相的键合率。这种情况下,短链聚合键合相会比长链单体键合相的键合度高很多。对比单体键合相,聚合物键合相的键合层较厚,有时会引起传质速度变慢。高载碳量的反相柱更加容易发生相塌陷。对于这些色谱柱,当流动相中有机相比例降到10%以下的时候,疏水固定相之间就会倾向于互相结合(self-associate),而不是处于在极性水溶液中的溶解状态(即相似相溶)。所以,高碳载量反而可能对反相色谱性能有害,而且保留时间的重现性也不好。